Арифметические действия в системах счисления. Арифметические операции с числами в позиционных системах счисления 1 арифметические операции в различных системах счисления

Арифметические операции в позиционных системах счисления

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам.

Сложение. Рассмотрим сложение чисел в двоичной системе счисления. В его основе лежит таблица сложения одноразрядных двоичных чисел:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или большей основания.

Сложение многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов в старшие. В качестве примера сложим в столбик двоичные числа 110 2 и 11 2:

Проверим правильность вычислений сложением в десятичной системе счисления. Переведем двоичные числа в десятичную систему счисления и затем их сложим:

110 2 = 1 × 2 2 + 1 × 2 1 + 0 × 2 0 = 6 10 ;

11 2 = 1 × 2 1 + 1 × 2 0 = 3 10 ;

6 10 + 3 10 = 9 10 .

Теперь переведем результат двоичного сложения в десятичное число:

1001 2 = 1 × 2 3 + 0 × 2 2 + 0 × 2 1 + 1 × 2 0 = 9 10 .

Сравним результаты - сложение выполнено правильно.

Вычитание. Рассмотрим вычитание двоичных чисел. В его основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначен 1 с чертой:

Умножение. В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

Деление. Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления. В качестве примера произведем деление двоичного числа 110 2 на 11 2:

Для проведения арифметических операций над числами, выраженными в различных системах счисления, необходимо предварительно перевести их в одну и ту же систему.

Задания

1.22. Провести сложение, вычитание, умножение и деление двоичных чисел 1010 2 и 10 2 и проверить правильность выполнения арифметических действий с помощью электронного калькулятора.

1.23. Сложить восьмеричные числа: 5 8 и 4 8 , 17 8 и 41 8 .

1.24. Провести вычитание шестнадцатеричных чисел: F 16 и А 16 , 41 16 и 17 16 .

1.25. Сложить числа: 17 8 и 17 16 , 41 8 и 41 16

Примечание:
Выполнять действия можно только в одной системе счисления, если вам даны разные системы счисления, сначала переведите все числа в одну систему счисления
Если вы работаете с системой счисления, основание которой больше 10 и у вас в примере встретилась буква, мысленно замените её цифрой в десятичной системе, проведите необходимые операции и переведите результат обратно в исходную систему счисления

Сложение:
Все помнят, как в начальной школе нас учили складывать столбиком, разряд с разрядом. Если при сложении в разряде получалось число больше 9, мы вычитали из него 10, полученный результат записывали в ответ, а 1 прибавляли к следующему разряду. Из этого можно сформулировать правило:

  1. Складывать удобнее «столбиком»
  2. Складывая поразрядно, если цифра в разряде > больше самой большой цифры алфавита данной Системы счисления, вычитаем из этого числа основание системы счисления.
  3. Полученный результат записываем в нужный разряд
  4. Прибавляем единицу к следующему разряду
Пример:

Сложить 1001001110 и 100111101 в двоичной системе счисления

1001001110

100111101

1110001011

Ответ: 1110001011

Сложить F3B и 5A в шестнадцатеричной системе счисления

FE0

Ответ: FE0


Вычитание:Все помнят, как в начальной школе нас учили вычитать столбиком, разряд из разряда. Если при вычитании в разряде получалось число меньше 0, мы то мы «занимали» единицу из старшего разряда и прибавляли к нужной цифре 10, из нового числа вычитали нужное. Из этого можно сформулировать правило:

  1. Вычитать удобнее «столбиком»
  2. Вычитая поразрядно, если цифра в разряде < 0, вычитаем из старшего разряда 1, а к нужному разряду прибавляем основание системы счисления.
  3. Производим вычитание
Пример:

Вычесть из 1001001110 число 100111101 в двоичной системе счисления

1001001110

100111101

100010001

Ответ: 100010001

Вычесть из F3B число 5A в шестнадцатеричной системе счисления

D9 6

Ответ: D96

Самое главное, не забывайте про то, что у вас в распоряжении только цифры данной системы счисления, так же не забывайте про переходы между разрядными слагаемыми.
Умножение:

Умножение в других системах счисления происходит точно так же, как и мы привыкли умножать.

  1. Умножать удобнее «столбиком»
  2. Умножение в любой системе счисления происходит по тем же правилам, что и в десятичной. Но мы можем использовать только алфавит, данный системы счисления
Пример:

Умножить 10111 на число 1101 в двоичной системе счисления

10111

1101

10111

10111

10111

100101011

Ответ: 100101011

Умножить F3B на число A в шестнадцатеричной системе счисления

F3B

984E

Ответ: 984E

Ответ: 984E

Самое главное, не забывайте про то, что у вас в распоряжении только цифры данной системы счисления, так же не забывайте про переходы между разрядными слагаемыми.

Деление:

Деление в других системах счисления происходит точно так же, как и мы привыкли делить.

  1. Делить удобнее «столбиком»
  2. Деление в любой системе счисления происходит по тем же правилам, что и в десятичной. Но мы можем использовать только алфавит, данный системы счисления

Пример:

Разделить 1011011 на число 1101 в двоичной системе счисления

Разделить F 3 B на число 8 в шестнадцатеричной системе счисления

Самое главное, не забывайте про то, что у вас в распоряжении только цифры данной системы счисления, так же не забывайте про переходы между разрядными слагаемыми.

НЕПОЗИЦИОННЫЕ

Непозиционные системы счисления

Непозиционные системы счисления появились исторически первыми. В этих системах значение каждого цифрового символа постоянно и не зависит от его положения. Простейшим случаем непозиционной системы является единичная, для которой для обозначения чисел используется единственный символ, как правило это черта, иногда точка, которых всегда ставится количество, соответствующее обозначаемому числу:

  • 1 - |
  • 2 - ||
  • 3 - |||, и т. д.

Таким образом, этот единственный символ имеет значение единицы , из которой последовательным сложением получается необходимое число:

||||| = 1+1+1+1+1 = 5.

Модификацией единичной системы является система с основанием, в которой есть символы не только для обозначения единицы, но и для степеней основания. Например, если за основание взято число 5, то будут дополнительные символы для обозначения 5, 25, 125 и так далее.

Примером такой системы с основанием 10 является древнеегипетская, возникшая во второй половине третьего тысячеления до новой эры. В этой системе имелись следующие иероглифы:

  • шест - единицы,
  • дуга - десятки,
  • пальмовый лист - сотни,
  • цветок лотоса - тысячи.

Числа получались простым сложением, порядок следования мог быть любым. Так, для обозначения, например, числа 3815, рисовали три цветка лотоса, восемь пальмовых листов, одну дугу и пять шестов. Более сложные системы с дополнительными знаками - старая греческая, римская. Римская также использует элемент позиционной системы - большая цифра, стоящая перед меньшей, прибавляется, меньшая перед большей - вычитается: IV = 4, но VI = 6, этот метод, правда, применяется исключительно для обозначения чисел 4, 9, 40, 90, 400, 900, 4000, и производных их сложением.

Новогреческая и древнерусская системы использовали в качестве цифр 27 букв алфавита, где ими обозначалось каждое число от 1 до 9, а также десятки и сотни. Такой подход обеспечил возможность записывать числа от 1 до 999 без повторений цифр.

В старорусской системе для обозначения больших чисел использовались специальные обрамления вокруг цифр.

В качестве словесной системы номерации до сих пор практически везде используется непозиционная. Словесные системы нумерации сильно привязаны в языку, и общие их элементы в основном относятся к общим принципам и названиям больших чисел (триллион и выше). Общие принципы, положенные в основу современных словесных нумераций вредполагают формирование обозначения посредством сложения и умножения значений уникальных названий.

Сложение и вычитание эффективно выполнять в исходной системе счисления. Способ с переводом каждого числа в 10-тичную систему, выполнении действия в ней, а затем обратного преобразования существенно длиннее и зачастую приводит к ошибкам.

При сложении чисел в произвольной позиционной системе счисления с основанием р в каждом разряде производится сложение цифр слагаемых и цифры, переносимой из соседнего младшего разряда, если она имеется. При этом необходимо учитывать, что если при сложении чисел получилось число, большее или равное р, то представляем его в виде p*k + b, где kÎ N – количество единиц переноса в следующий разряд 0 ≤ b ≤ p - 1

При сложении и вычитании двоичных чисел достаточно знать правила сложения двоичных цифр (таблицу сложения двоичной системы):

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10

+ 1101 2

1 +1 = 2 = 1

0 +0 + 1 = 1

1 + 1 = 2 = 1 *2 + 0 («1» переносится в старший разряд)

1 + 0 + 1 = 2 = 1 *2 + 0 («1» переносится в старший разряд)

5 +6 = 11 = 1 *8 + 3 («1» переносится в старший разряд)

4 +1 + 1 = 6

6 + 3 = 9 = 1 *8 + 1 («1» переносится в старший разряд)

7 + 0 + 1 = 8 = 1 *8 + 0 («1» переносится в старший разряд)

+ E836 16

10 +6 = 16 = 1 *16 + 0 («1» переносится в старший разряд)

15 +3 + 1 = 19 = 1 *16 + 3 («1» переносится в старший разряд)

9 + 8 + 1 = 18 = 1 *16 + 2 («1» переносится в старший разряд)

0 + 14 + 1 = 15 = F

При вычитании чисел в р цифры вычитаются поразрядно. Если в рассматриваемом разряде необходимо от меньшего числа отнять большее, то занимается единица в следующем (старшем разряде). Занимаемая единица равна р единицам этого разряда (аналогично, когда занимаем единицу в десятичной системе счисления, то занимаемая единица равна 10.) Для двоичной системы счисления занимаемая единица = 2 10 = 10 2 , для восьмеричной системы счисления занимаемая единица = 8 10 = 10 8 , для шестнадцатеричной системы счисления занимаемая единица = 16 10 = 10 16 .

Примеры: Точками в примерах с вычитанием отмечены разряды, из которых приходилось занимать.

2 – 1 = 1 (так как 0 < 1 пришлось занять из соседнего разряда)

2 – 1 = 1 (так как 0 < 1 пришлось занять из соседнего разряда)

В этом разряде остался 0, вновь пришлось занимать из старшего разряда: 2 – 1 = 1

В этом разряде остался 0

8 + 5 – 6 = 7 (так как 5 < 6 пришлось занять из соседнего разряда)


8 + 0 – 4 = 4 (после того, как заняли, в этом разряде остался 0)

16 + 6 – 10 = 12 = C 16 (заняли из соседнего разряда)

16 + 2 – 15 = 3 (В этом разряде осталась 2, заняли из соседнего разряда)

16 + 7 – 9 = 14 = Е 16

В этом разряде осталась D 16

Иногда при вычитании необходимо занимать единицу через несколько разрядов, так как в соседнем или в нескольких соседних разрядах подряд стоят нули. В этом случае надо иметь в виду, что в этих разрядах на месте нулей после того, как заняли, будет располагаться «последняя цифра» той системы счисления, в которой записано уменьшаемое, т.е. цифра 1 для двоичной, цифра 7 для восьмеричной и цифра F для 16-ричной систем счисления.

· 1 1 2 · 7 7 8 · F F 16

1000 2 1000 8 1000 16

11 2 11 8 AD 16

101 2 767 8 F53 16

Замечание . При выполнении арифметических операций с числами, которые находятся в разных системах счисления, необходимо перевести числа в одну и ту же систему и только потом выполнять действие. Конечно, можно в качестве такой системой счисления выбрать десятичную систему, однако, в случае, когда в числах много цифр, такой перевод будет трудоемким. Например, при переводе числа 123456789ABCDEF 16 в десятичную систему придется вычислять 16 в степенях вплоть до четырнадцатой.

Умножение в позиционной системе счисления является достаточно сложным действием, поэтому более надежно умножение выполнять в 10-тичной системе с предварительным и завершающим переводом в исходную систему. Однако умножение на 2 можно представить в виде суммы. Например: 2*Т, где Т = 315 8

2 * 315 8 = 315 8

При умножении на 7 10 , 8 10 , 9 10 можно воспользоваться переводом в десятичную систему. Но так как десятичное число 8 равно 8-ричному числу 10 (8 10 = 10 8), тогда умножение можно заменить умножением на десять с последующим вычитанием или сложением.

1) 8 10 * 6271 8 = 10 8 * 6271 8 = 62710 8

2) 7 10 * 6271 8 = (8 10 – 1 10) * 6271 8 = (10 8 – 1 8) * 6271 8 =

3) 9 10 * 6271 8 = (8 10 + 1 10) * 6271 8 = (10 8 + 1 8) * 6271 8 =

Замечание . Если второй сомножитель представлен в двоичной или шестнадцатеричной системе, его предварительно необходимо перевести в восьмеричную систему счисления, например: 7 10 * А3С5 16 .

Сначала переведите А3С5 16 в восьмеричную систему, используя метод тетрад и триад, а затем выполните умножение.

А3С5 16 = 1010 0011 1100 0101 2 = 001 010 001 111 000 101 2 = 121705 8 .

7 10 * 121705 8 = (8 10 – 1 10) * 121705 8 = (10 8 – 1 8) * 121705 8 =

121705 8

При умножении на 15 10 , 16 10 , 17 10 можно воспользоваться тем фактом, десятичное число 16 равно 16-ричному числу 10 (16 10 = 10 16). В этом случае, как и в предыдущем, умножение можно заменить умножением на десять с последующим вычитанием или сложением.

1) 16 10 * A6D5 16 = 10 16 * A6D5 16 = A6D50 16

2) 15 10 * A6D5 16 = (16 10 – 1 10) * A6D5 16 = (10 16 – 1 16) * A6D5 16 =

3) 17 10 * A6D5 16 = (16 10 + 1 10) * A6D5 16 = (10 16 + 1 16) * A6D5 16 =

Замечание . Если второй сомножитель представлен в двоичной или восьмеричной системе, его предварительно необходимо перевести в шестнадцатеричную систему счисления, например: 17 10 * 7154 8 .

Сначала переведите 7154 8 в шестнадцатеричную систему, используя метод тетрад и триад, а затем выполните умножение.

7154 8 = 111 001 101 100 2 = 1110 0110 1100 2 = E6C 16 .

17 10 * E6C 16 = (16 10 + 1 10) * E6C 16 = (10 16 + 1 16) * E6C 16 =

СИСТЕМЫ СЧИСЛЕНИЙ

Общие сведения

Краткий обзор. Основные термины и понятия

Система счисления – способ представления любого числа с помощью алфавита символов, называемых цифрами.

Существует много систем счисления, которые можно разбить на 2 вида: непозиционные и позиционные.

Непозиционная система. Примером является римская система счислений. В ней значение каждого символа постоянно, где бы символ ни находился в числе.

I, IX, XXI, LXI, XLII – символом “I” во всех приведенных числах закодирована цифра единица.

Позиционные системы. Пример арабская система.В позиционной системе значение каждой цифры (символа) зависит от места в числе, где записана эта цифра (символ). Убедимся в этом, на примере из принятой у нас десятичной системы, выполнив тождественные преобразования числа.

5555=5000+500+50+5. Итак, цифра 5 обозначает 5000, 500, 50 и 5.

В десятичной системе применяется 10 цифр (символов) для записи чисел: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Количество цифр (символов) применяемых в системе называют ее основанием, следовательно, у нашей системы основание равно 10, поэтому ее называют десятичной. Выполним снова преобразования десятичного числа

5685=5*1000+6*100+8*10+5=5*10 3 +6*10 2 +8*10 1 +5*10 0

Мы видим, число можно записать с помощью слагаемых, в которых присутствует основание системы. Оно возведено в степень на единицу меньше, чем порядок цифры в числе справа налево.

Кроме десятичной системы существуют некоторые другие системы счислений. Например, 12-тиричная применялась в России до 1917 года. До сих пор сохранились выражения «дюжина», «чертова дюжина». Ее до сих пор применяют в денежных единицах некоторых стран. На часах 12 чисел. 12 месяцев в году и т.д.

Возможность применять различные системы счислений основана на том, что на носителе информации (бумаге, папирусе) для можно записать много различных символов и придать им некоторое определенное значение.

Способы записи информации в компьютерной технике

На носителях информации, связанных с компьютерной техникой, широких возможностей для записи информации в настоящее время нет. Для записи информации в вычислительной технике используют 2 устойчивых состояния различных устройств.

На дискете или винчестере, которые можно представить состоящими из набора элементарных магнитов, эти магниты можно повернуть северным либо южным полюсом к подложке. Точка на диске может отражать или не отражать свет. На карте из плотной бумаги в определенном месте может быть или не быть отверстие. Электрическая цепь может проводить или не проводить ток. Лампочка может гореть или не гореть. Одному такому состоянию можно придать значение 1, второму 0. Таким образом, на одном элементе памяти можно записать либо 0, либо 1.

Этот минимальный объем информации, который можно записать на таких носителях называютбит .

Исторически сложилось так, что 8 носителей информации объединили в одну ячейку памяти, и количество записываемой в них информации назвали байт. Таким образом 1 байт = 8 бит.
В байте можно записать 2 8 =256 различных комбинаций двоичных чисел, то есть чисел состоящих только из двух цифр 0 и 1: 00000000, 00000001, 00000010, 00000011 . . . 11111110, 11111111.

Если посмотреть несколько ячеек памяти, то в них будет записано множество нулей и единиц. Адреса ячеек памяти также представляются в двоичной системе. Чтобы облегчить человеку работу с такого рода информацией решили работать с ней по правилам 2-ной системы счислений. Числа этой системы можно перевести в другие более привычные и наглядные для человека системы: 8-меричную, 16-тиричную, 10-тичную.

Таблица 1.1.2

Десятичная система Двоичная система Восьмеричная система Шестнадцатеричная система
A
B
C
D
E
F

Из таблицы 1.1.2 видно, какие символы применяются в качестве цифр в разных системах. Если использован последний допустимый символ, то в младшем разряде пишут 0, а в старшем 1.

Арифметические действия в системах счисления

Правила выполнения арифметических действий в десятичной системе счисления сохраняются и для других позиционных систем счисления.

Сложение

Складываем сначала единицы, потом десятки и т.д. до тех пор, пока не дойдем до старшего разряда. При этом всегда помним, что когда при сложении чисел в каком-либо разряде получается сумма, большая чем основание, то надо сделать перенос в следующий разряд.

Например 173, 261 8

16, 35 8

Восьмеричная с.с.